CLASS

Comprehensive Large Array-data Stewardship System

Users' Conference

Design Plans and Options Under Consideration

Doug Zirkle
CLASS SET chair
CLASS LTAT member

August 11, 2005

Agenda

- Introduction
- Planned Enhancements
- Architectural Support

Introduction

Architecture and Design Influencers

- CLASS
 - PM: Program Management
 - CPMT: CLASS Project Management Team
 - SET: System Engineering Team
 - LTAT: Long-Term Architecture Team
- ARWG: Archive Requirements Working Group
- User Community
- NOAA/NESDIS Management
- Current implementation

Current Deployment & Short-Term Plans

- "Type 1" (complete) archive nodes
 - Current: Suitland, Asheville
 - Suitland → Boulder: early 2006
- "Type 2" (partial) archive nodes
 - Fairmont (EOS?), middle of 2006
 - Suitland, prior to NPP
- Development and integration test nodes
 - Current: Suitland, Fairmont (dev only)
 - Consolidated at Suitland, late 2005
- Note: *Node Study* draft August, 2005

LTA (Long-Term Architecture)

- CLASS Architecture Study Report completed February, 2003
- LTA will update and extend Architecture Study Report
 - Flesh out logical and physical architecture
 - Develop transition plan
- Architectural Overview: February, 2006
- Transition Plan: June, 2006
- Architectural Reference Manual: January, 2007

"Perspective" for this Discussion

- Architectural capabilities vs. implementation
- Mechanisms vs. policy
- Architectural viewpoint: managing change
- Not a "real-time" system; no plans to become so

Planned Enhancements

Planned Enhancements (1)

- Automated interactions via APIs
- Reprocessing support
- Enhanced QA support
- Greatly enhanced metadata support
 - Pervasive standards conformance, e.g.:
 - FGDC
 - ISO
 - Z39.50
 - Interfaces with additional metadata systems
 - "Rich Inventory"

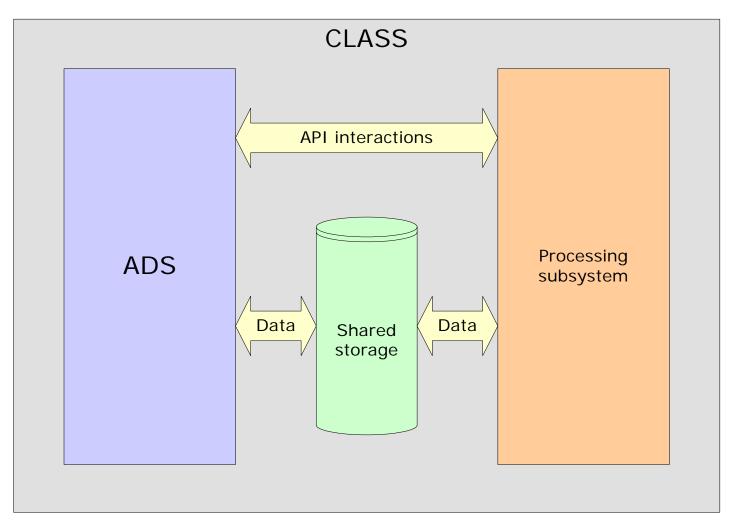
Planned Enhancements (2)

- Fulfillment processing support
 - More format & content conversions
 - More re-sampling alternatives
 - Better sub-setting capabilities
 - Super-setting
 - Composition
- On-the-fly processing
- Security
 - Digital signatures
 - Encryption
- Tools
- Processing software

Planned Enhancements (3)

- Enhanced geospatial capabilities
- New campaigns
 - NPP/NPOESS
 - -EOS
 - NEXRAD
 - In-situ?
- External repository support
- Large data volumes
 - Transport
 - Management

Architectural Support


Standards

- OAIS Reference Model
- Data formats
- Transport/interoperability: OPeNDAP, etc.
- Geospatial (e.g., OGC)
- APIs: Web services for now
- Other ...

"Processing" Subsystem

- Differentiate CLASS, ADS (Archive & Distribution Subsystem)
- Co-locate processing with data for certain highvolume or critical activities, e.g.:
 - Reprocessing
 - -QA
- Not a generic hosting capability

Processing Subsystem Illustration

Note: External APIs not shown

Selected Architecture/Design Features (1)

- Public and private APIs
- Move toward classic distributed model
 - Concurrency
 - Transparency
 - Partial failure
 - Dynamic, incremental change
- Increased network, resource management efforts
- Stronger emphasis on portability

Selected Architecture/Design Features (2)

- Finer-grained modularity
 - Application level, e.g.:
 - Receipt, acceptance, ingest, archive
 - Delivery vs. "Will call"
 - Component level, e.g.:
 - Transport
 - Storage
- Combination of preceding factors leads to:
 - More flexibility in node deployment
 - Reduction in deployment and operation costs
 - Optimization and customization by configuration

Closing

Questions/Discussion?

Thank you!